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ABSTRACT

In recent years, the advancement of mobile robots across sectors like intelligent manufac-
turing and personal transportation has greatly enhanced human life. This study specifically
addresses challenges in unmanned surface vehicles (USVs), with a focus on enhancing their
operational capabilities through advanced 3D perception algorithms and multi-sensor fusion
techniques. Recognizing the importance of edge computing for stability and reliability, our re-
search delves into selecting the most appropriate sensors for diverse tasks and developing

robust sensor preprocessing and fusion algorithms.

Central to our study is the innovative application of these methodologies in USV target track-
ing. We have thoroughly explored the strengths and limitations of various sensors, particularly
in dynamic aquatic environments, which are crucial for real-time decision-making and motion
planning in USVs. By successfully integrating data from IMUs, GPS, cameras, and LiDAR, our
team has constructed dynamic obstacle maps and achieved effective real-time target localiza-
tion and tracking, even in scenarios lacking direct communication with the target. This research
not only presents a practical edge computing solution for USVs but also advances their auton-
omy and operational efficiency. The development of a unified simulation and real-world USV
platform, which combines a multi-sensor system, validates the feasibility, stability, and robust-
ness of our approach. This work significantly contributes to the field of intelligent robotics by
providing a scalable and reliable framework for USVs, potentially impacting the development

of multi-agent systems and enhancing the capabilities of USV swarms.

Index Terms: 3D perception, multi-sensor fusion, unmanned surface vehicle (USV)
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CHAPTER 1. INTRODUCTION

The recent advancements in mobile robotics, particularly in sectors such as intelligent man-
ufacturing and personal transportation, have underscored the importance of computational
efficiency in this rapidly evolving field. While acknowledging the significant contributions of
large language models (LLMs) and Transformer technology, this study pivots its focus towards
the realm of edge computing, especially in the context of unmanned surface vehicles (USVs).
The decision to concentrate on edge computing stems from the need to address operational
stability and reliability challenges within the dynamic environments where USVs operate, as

well as to optimize the balance between computational load and performance efficacy.

Edge computing emerges as a pivotal element in this context, offering a solution to the high
computational demands typically associated with advanced robotics algorithms. By facilitating
computation closer to the data source, edge computing enables more responsive and efficient
processing, a crucial factor for real-time applications in USV operations. This approach dove-
tails with the study’s aim of augmenting USV capabilities through the integration of advanced

3D perception algorithms and multi-sensor fusion techniques.

Central to the methodology of this research is the exploration of sensor selection and optimiza-
tion for USVs, emphasizing the development of robust algorithms for sensor preprocessing
and fusion. These efforts are geared towards harnessing the full potential of edge computing,
aligning with the overarching goal of enhancing the operational efficiency of unmanned surface
vehicles. This study thereby represents a significant contribution to the field of mobile robotics,
focusing on edge-centric solutions tailored to meet the unique challenges and requirements of

USVs.
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Figure 1.1: 3D Perception Multi-Tasking Enabled by Multi-Sensor Integration

1.1 Scope

The analysis within this thesis is structured around three critical dimensions that collectively
provide a comprehensive understanding of USV technology, as illustrated in Figure 1.1. These
dimensions are essential to dissecting the challenges and opportunities in advancing USVs,
encompassing the sophistication of perception algorithms, the capabilities and interplay of

various sensors, and the integration and refinement of multi-sensor fusion algorithms.

1.1.1 Advancements in 3D Perception Algorithms for USVs

The exploration of 3D perception algorithms in USVs is central to enhancing their operational
capacities in autonomous navigation, object recognition, and spatial awareness. This includes
a deep dive into how these algorithms interpret complex visual and spatial information to create
accurate, multi-dimensional environmental models. The focus extends to the challenges inher-
ent in processing and integrating volumetric data from diverse sources, ensuring that USVs
can reliably navigate and respond to dynamic maritime environments. Current advancements
in this domain are evaluated, emphasizing the development of algorithms that are not only
precise but also computationally efficient, catering to the unique demands of USVs operating

in edge computing environments.



Figure 1.2: Perception Sensors from 1-D (Left) to 3-D (Right)
Sensors depicted are products of brands Parker, HIKVISION, HESAI, and LIVOX.

1.1.2 Sensor Integration and Functionality in USVs

In this scope, the analysis is concentrated on the array of sensors critical to USVs, encom-
passing Inertial Measurement Units (IMUs), GPS, cameras, and different types of LiDAR, such
as solid-state and rotating LiDAR. The study delves into the distinctive attributes and func-
tionalities of each sensor, elucidating their roles in accurate data gathering and environmental
perception. Emphasis is placed on the synergy of these sensors, examining how their col-
lective data contributes to a more nuanced and comprehensive understanding of the USVs’
operational landscape. This comparative analysis not only highlights the strengths and limita-
tions of each sensor type but also their interplay in enhancing the overall sensory capability of
USVs. An illustrative representation of these sensors, including IMUs, GPS, cameras, rotating

LiDAR, and solid-state LiDAR (Livox Mid-360), is provided in Figure 1.2.

1.1.3 Optimizing USV Performance through Multi-Sensor Fusion

This scope addresses the critical role of multi-sensor fusion algorithms in consolidating and in-
terpreting data from various sensors on USVs. The focus here is on the advantages this fusion
brings, notably in terms of system stability, robustness, and enhanced decision-making capa-
bilities. The algorithms are explored for their effectiveness in creating an integrated situational
view, especially beneficial in Bird’s Eye View (BEV) perspectives for complex task execution.
The discussion encompasses how this fusion facilitates a holistic approach to USVs’ oper-
ational tasks, including navigation, obstacle avoidance, and mission-specific objectives. This
comprehensive examination underscores the importance of multi-sensor fusion in elevating the

operational efficiency, safety, and versatility of USVs in diverse maritime applications.


https://www.microstrain.com/
https://www.hikvision.com/en/
https://www.hesaitech.com/
https://www.livoxtech.com/

1.2 Problem Statement

1.2.1 General Question about 3D Perception

The general question investigates the unique advantages of diverse sensors in 3D perception
tasks. This inquiry centers on how integrating these sensors can lead to more robust and

precise perception systems applicable across various domains. Key focus areas include:

1. Multi-Sensor Data Fusion: Exploring strategies for combining data from sensors with

different modalities to enhance the accuracy and stability of perception systems.

2. Adaptive Perception in Dynamic Environments: Examining how sensor integration
contributes to more resilient and adaptable perception in changing conditions, such as

varying lighting or weather.

3. Sensor Synergy for Complex Scenarios: Assessing the effectiveness of multi-sensor
approaches in complex, obstacle-rich settings, where single-sensor systems may fall

short.

4. Perception to Decision-Making: Investigating the impact of integrated sensor data on
the decision-making processes in autonomous systems, emphasizing the transition from

raw data to actionable insights.

1.2.2 Specific Question about USV Target Tracking

The specific inquiry focuses on realizing stable and cost-effective 3D target localization and
trajectory prediction for USV target tracking on mobile platforms, as depicted in Figure 1.3.
The aim is to ensure consistent target pursuit with effective obstacle avoidance. The areas of

interest include:

1. IMU-LIDAR Correction in Turbulent Waters: This focuses on motion correction for

USVs navigating unstable aquatic environments, aiming to refine the integration of IMU

4
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Figure 1.3: USV Tracker Sketch in Obstacle Map
a: Physical experiment in target tracking with a sensor-equipped white boat and a yellow boat as the
moving target. b: Target detection from sensor images and obstacle grid-map from point cloud data. c:
Target tracking in obstacle map, showing path planning based on predicted target trajectory.

and LIDAR data. The goal is to enhance positional accuracy and stability amidst turbu-

lent conditions.

2. Reducing Aquatic Interference: The study evaluates dataset augmentation techniques
for imaging systems in aquatic settings, concentrating on minimizing the impact of water-

specific interferences, such as reflections and refractions, to improve imaging quality.

3. Sim-to-Real for Experimental Limitations: This addresses the limitations inherent in
real-world testing environments by leveraging simulation platforms. The approach in-
volves using simulated environments to validate perception and planning algorithms,

ensuring their efficacy before deployment in actual aquatic scenarios.

4. Optimizing Localization Range: The research aims to determine the optimal opera-
tional range for effective localization under diverse aquatic conditions. It seeks to strike
a balance between range and accuracy, adapting to the dynamic nature of aquatic envi-

ronments for enhanced USV performance.



1.3 Approach

In the study, four distinct methodologies are employed for separate tasks. The first task, tar-
get detection, is addressed using the YOLO algorithm, optimized for efficient and real-time
object detection. This method is particularly effective in identifying and classifying objects
within images rapidly. The second task involves building an obstacle map, for which the Eu-
clidean Signed Distance Fields (ESDF) method is utilized. This method excels in spatial data
representation, providing accurate distance measurements and spatial relationships essential
for navigation and obstacle avoidance. For dataset generation, the study employs advanced
3D reconstruction techniques. These techniques are crucial for creating detailed and realistic
datasets that closely mimic real-world scenarios, thereby enhancing the robustness of the sub-
sequent analysis. The fourth task, target trajectory prediction, integrates the Extended Kalman
Filter (EKF) with neural network methodologies such as Long Short-Term Memory (LSTM) net-
works. This hybrid approach leverages the strengths of both EKF in handling uncertainties and

LSTM in learning from time-series data, resulting in improved prediction accuracy.

The experimental phase of the study was conducted within a sophisticated simulation environ-
ment, designed and built in-house. This environment simulates real-world conditions, including
dynamic feedback systems, and environmental factors such as wind and wave interactions. It
also features a complex background to increase the richness and variability of the image data
used in the experiments. The simulator is equipped with multi-sensor capabilities, allowing for

the customization and fine-tuning of sensor parameters.

Following the simulation phase, the algorithms were further validated through physical exper-
iments. These experiments were conducted using a specially designed vessel and sensor
platform that closely corresponded to the configurations used in the simulation. This approach
ensured a consistent and thorough evaluation of the algorithms’ effectiveness in both simulated

and real-world conditions, thereby enhancing the validity of the research findings.



1.4 Contributions

The outcomes of this thesis are significant contributions to the field of USVs, encompassing the
development of simulation platforms, the design of sensory systems, the optimization of multi-
sensor fusion algorithms, and providing insightful recommendations for multi-USV systems.

These achievements are detailed as follows:

1. Development of a Gazebo-Based USV Simulation Platform: A sophisticated simula-
tion platform for USVs was constructed using Gazebo, featuring a realistically modeled
catamaran with dynamic feedback, including environmental dynamics like water surface
and wind disturbances. This platform integrates various sensors communicating through
ROS, providing a comprehensive environment for testing and refining USV functionali-

ties.

2. Design of a Sensory System for a Physical Catamaran: Corresponding to the sim-
ulation model, a sensory system for a physical twin-hulled boat was designed and im-
plemented. This system, tested in real aquatic environments, effectively fulfills the re-
quirements for target tracking, demonstrating the practical application of the simulated

models.

3. Optimization of Multi-Sensor Fusion Algorithms on Edge Computing Devices: This
research has successfully optimized multi-sensor fusion algorithms for edge computing
devices, focusing on advancements in target detection, target depth estimation, tar-
get motion prediction, and USVs’ own trajectory planning and decision-making within
obstacle-rich environments. These algorithms have been seamlessly integrated into the
USVs’ control systems, enhancing the USVs’ ability to navigate through complex sce-
narios. This integration allows for precise control over the USVs’ propulsion, enabling
efficient tracking of targets while maintaining a safe distance, thereby significantly im-

proving the autonomous capabilities of the USVs in various operational contexts.



4. Comparative Analysis of Sensors and Strategic Recommendations for Perception
Platforms: This study conducted a comprehensive analysis of various sensors, inte-
grating them into multi-sensor platforms for edge computing. Strategic recommenda-
tions emerged for optimizing sensor fusion, enhancing perception accuracy in USVs.
The research utilized a sim-to-real approach, validating sensor platforms through com-
bined simulation and real-world testing, and developed a cost-effective physical USV,

advancing practical applications in USV technology.

5. Advancements in Multi-USV Systems and Swarm Planning: The research contributed
to the development of multi-USV systems and swarm planning, providing a foundational
platform for exploring advanced operational concepts. This work is pivotal for future
progress in swarm intelligence and coordinated USV operations, opening new avenues

for complex maritime missions.

These outcomes collectively represent a significant advancement in USV technology, providing
valuable insights and practical solutions that enhance the operational capabilities and efficiency

of USVs in diverse maritime environments.

In synthesizing these methodologies and contributions, this thesis not only bridges the gap
between theoretical concepts and practical applications in USV technology but also lays a
foundational framework for future explorations. The integration of advanced algorithms and
multi-sensor fusion within the dynamic and challenging realm of maritime environments marks
a significant stride towards autonomous maritime operations. The subsequent chapters will
delve deeper into each aspect of our approach, meticulously dissecting the intricacies of our
methodologies and the tangible impacts of our contributions. This journey from conceptual-
ization to realization reflects not just a series of technological advancements but also a step
forward in our understanding of intelligent systems and their interaction with the complex, ever-
changing natural world. Ultimately, this work seeks to pioneer new frontiers in USV capabilities,
paving the way for groundbreaking advancements in intelligent robotics and autonomous sys-

tems.



CHAPTER 2. LITERATURE REVIEW

2.1 Comprehensive Overview of 3D Perception: Tasks and Datasets

In the domain of 3D perception tasks, particularly relevant to autonomous systems like USVs
and autonomous vehicles, the literature distinguishes between dense and sparse tasks. Dense
tasks, such as 3D modeling and semantic segmentation, require dense image data or solid-
state LiDAR inputs. These tasks are pivotal for creating detailed environmental models and
understanding contextual elements. Sparse tasks, including object detection and tracking, are
more versatile in data requirements, allowing for both dense and sparse point cloud inputs. The
preprocessing of input data in these tasks often involves a trade-off between data reduction for
speed enhancement and the retention of crucial information for accuracy, as depicted in Figure

2.1 and Figure 2.2.

Prominent in the field are public datasets like Waymo (Sun et al., 2019), Kitti (Geiger et al.,
2012), nuScenes (Caesar et al., 2020), and Apollo (Huang et al., 2018), which have signif-
icantly contributed to advancements in 3D perception. These datasets provide diverse sce-
narios and challenges, encompassing classic problems like object detection and extending to
image semantic segmentation, depth estimation, and object tracking. Crucially, these datasets
also include tasks related to environmental perception, such as trajectory and behavior predic-

tion, lane line detection, and SLAM (Simultaneous Localization and Mapping).

The fusion of data from various sensors to accomplish multiple tasks is a recurring theme in the
literature. Some methods propose end-to-end multi-tasking within a single network architec-
ture, necessitating substantial computational resources. This presents a challenge in migrating

these tasks to edge computing devices, where resource constraints are a significant consid-
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Figure 2.1: Examples of 3D Perception Tasks
Top row: Semantic segmentation images from Waymo (Sun et al., 2019). Middle row: Trajectory
prediction using Ma et al. (2019). Bottom row, right: Moving object removal by Liao et al. (2020). All
other tasks and data derived from sub-tasks in the Apollo dataset (Huang et al., 2018).
eration. The exploration of efficient algorithmic solutions and hardware optimizations for edge

deployment remains an active area of research, aiming to balance computational demands

with the real-time processing needs of autonomous systems.

These methods underscores the complexity and diversity of 3D perception tasks and the im-
portance of rich datasets in driving the field forward. It highlights the ongoing efforts to optimize
these tasks for practical applications, especially in edge computing environments, reflecting a

critical area of development in autonomous systems technology.

2.2 Advancements in Object Detection Technologies

In exploring the field of object detection, this review categorizes advancements into two distinct

domains based on data dimensionality. The first domain, 2D Vision-Based Object Detection,

10
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Figure 2.2: 3D Perception Datasets and Applications

primarily focuses on techniques that interpret two-dimensional image data. In contrast, the
second domain, 3D Object Detection Methods, delves into approaches that process and an-
alyze three-dimensional data. This bifurcation provides a structured understanding of how
object detection technologies have evolved and adapted to different data formats, each with its

unique challenges and applications.

2.2.1 2D Vision Based Object Detection

Faster R-CNN (Ren et al., 2015) represents a pivotal advancement in object detection, integrat-
ing Region Proposal Networks (RPNs) with Fast R-CNN (Girshick, 2015). While its RPN layer
efficiently identifies object proposals for accurate detection, the computational intensity may
pose challenges in edge computing platforms with limited resources. YOLO (Redmon et al.,
2016) stands for You Only Look Once, is renowned for its exceptional speed and efficiency in
object detection. Despite its capability to analyze the entire image in a single evaluation, the
high computational demand for processing large images can be a limiting factor in resource-
constrained environments. The Detection Transformer (DETR) (Carion et al., 2020) introduces

a novel transformer-based architecture to the realm of object detection. While DETR stream-

11



Table 2.1: Comparison of Algorithms in Different Tasks

Tasks 2D Image 3D Point Cloud Multi-sensor Fusion
Detection Faster-RCNN (Ren VoteNet (Qi et al, MV3D (Chen, Ma,
et al, 2015), Yolo 2019), PV-RCNN (Shi Wan, Li and Xia, 2017),
(Redmon et al., 2016), et al., 2020), VoxelNet AVOD (Ku et al., 2018)
DETR (Carion et al., (Zhou and Tuzel, 2018)
2020)
Segmentation U-Net (Ronneberger PointNet (Qi, Su, Mo FusionSeg (Jain et al.,
et al.,, 2015), DeepLab and Guibas, 2017), 2017), PointFusion (Xu
(Chen, Papandreou, PointNet++ (Qi, Yi, Su etal.,, 2018)
Kokkinos, Murphy and and Guibas, 2017),
Yuille, 2017) 3D-U-Net (Cicek et al.,
2016)
Tracking SiamFC (Bertinetto  PointTrackNet (Wang -
et al., 2016), MDNet et al, 2020), 3D-
(Nam and Han, 2015), siamRPN (Fang et al.,
DeepSORT (Wojke 2021)
et al., 2017)
BEV - - LSS (Philion and Fidler,

2020), BEVFormer (Li
et al.,, 2022), BEVFu-
sion (Liu et al., 2023)

lines the detection pipeline and showcases the versatility of transformers, its reliance on global
reasoning across the entire image might be computationally demanding for edge computing

platforms.

U-Net (Ronneberger et al., 2015) designed for biomedical image segmentation, has become
widely used in various image segmentation tasks. Its symmetric expanding path enables pre-
cise localization, but the complexity can lead to significant computational demands, particularly
in real-time analysis scenarios on limited hardware resources. DeepLab (Chen, Papandreou,
Kokkinos, Murphy and Yuille, 2017), a state-of-the-art semantic segmentation algorithm, is
known for its use of atrous convolution to capture multi-scale context. Although achieving
high accuracy, its sophisticated architecture results in substantial computational load, making

it challenging to deploy in edge computing scenarios where resources are constrained.

In the realm of tracking, Siamese Fully Convolutional (SiamFC) Bertinetto et al. (2016) net-

works offer a novel approach using a fully convolutional siamese network. While noted for

12



its simplicity and speed, its potential struggle with significant appearance changes and occlu-
sions may be a concern in edge computing environments. Multi-Domain Network (MDNet)
(Nam and Han, 2015) employs a novel domain-specific layer approach, allowing robust track-
ing across various scenarios. However, its computational intensity can limit real-time applica-
tion in resource-constrained environments. DeepSORT (Wojke et al., 2017), an extension of
the Simple Online and RealtimeTracking (SORT) algorithm, incorporates deep learning fea-
tures for improved accuracy. Despite its enhanced performance, the increased complexity of
DeepSORT can result in higher computational demands, making it less suitable for real-time

applications in edge computing platforms.

These algorithms, each contributing significantly to their respective fields, demonstrate a bal-
ance between accuracy and efficiency. However, their computational requirements present
challenges in edge computing environments, where processing power and memory are often

limited, affecting real-time processing and scalability in demanding applications.

2.2.2 3D Object Detection Methods

In 3D Point Cloud Algorithms, several methods have shown promise, yet they pose substantial

computational challenges in edge computing environments.

For detection, VoteNet (Qi et al., 2019) introduces deep learning for 3D object detection in point
clouds. While innovative, its complex voting scheme and 3D convolution operations are com-
putationally intensive, making it less feasible on limited-resource edge platforms. PV-RCNN
(Shi et al., 2020) combines voxel and point-based networks for enhanced detection accuracy.
However, this combination leads to increased computational load, challenging its deployment
on edge devices with constrained processing capabilities. Similarly, VoxelNet (Zhou and Tuzel,
2018) utilizes 3D convolutions for voxel feature encoding, which demands high computational

power, posing difficulties in resource-limited edge computing scenarios.

In the segmentation domain, PointNet (Qi, Su, Mo and Guibas, 2017) and PointNet++ (Qi, Vi,

Su and Guibas, 2017) directly process point clouds, which can be computationally demanding

13



due to the need for processing large numbers of points and complex feature extraction. 3D-U-
Net (Cicek et al., 2016), adapted for volumetric segmentation, faces similar challenges. The
3D convolutions and large model size inherent in 3D-U-Net require substantial computational

resources, hindering its practicality on edge devices.

Regarding tracking, PointTrackNet (Wang et al., 2020) and 3D-siamRPN (Fang et al., 2021)
offer advanced tracking capabilities. However, their sophisticated architectures, including point
cloud processing and Siamese networks, result in high computational overhead. This makes
them challenging to deploy on CPUs of edge computing platforms, where processing power

and memory are limited.

Overall, while these methods have advanced 3D point cloud processing, their computational
requirements pose significant challenges in edge computing environments. The high process-
ing demands and memory requirements limit their practical application on edge platforms,
particularly when only CPU-based processing is available. This highlights the need for more

computationally efficient algorithms in scenarios where hardware resources are constrained.

2.3 Innovations in Multi-Sensor Fusion Techniques

In Multi-sensor Fusion, various methods have been developed to enhance detection, seg-
mentation, and Bird’s Eye View (BEV) representation, crucial for applications like autonomous

driving and robotic navigation.

Detection in multi-sensor fusion employs methods like MV3D (Chen, Ma, Wan, Li and Xia,
2017) and Aggregate View Object Detection (AVOD) (Ku et al., 2018). MV3D combines LiDAR
point cloud and image data to generate accurate 3D object detections, but its early fusion
approach, integrating raw data from different sensors, can be computationally expensive and
sensitive to sensor misalignments. AVOD, on the other hand, focuses on a later stage fusion
by aggregating region proposals from both camera and LiDAR features, which, while more
efficient in handling sensor discrepancies, still faces the challenge of high computational load

for real-time processing on edge devices.

14



Segmentation techniques like FusionSeg (Jain et al., 2017) and PointFusion (Xu et al., 2018)
illustrate the diversity in fusion strategies. FusionSeg applies early fusion at the data level,
combining visual and spatial information, which can lead to improved segmentation accuracy
but at the cost of increased computational complexity. PointFusion, employing late fusion at the
feature level, fuses deep features from images and point clouds, offering a balance between
computational efficiency and accuracy, yet may not fully exploit the complementary nature of

different sensor modalities.

For BEV methods such as LSS (Philion and Fidler, 2020), BEVFormer (Li et al., 2022), and
BEVFusion (Liu et al., 2023) demonstrate advanced techniques. LSS (Lift, Splat, Shoot) lifts
2D semantics into a 3D space, providing a comprehensive BEV representation, but its reliance
on high-dimensional feature lifting can be computationally demanding. BEVFormer and BEV-
Fusion, leveraging transformer architectures and deep fusion strategies, offer improved BEV
representations. These methods exploit the depth accuracy of point clouds to enhance the
BEV perspective, which is particularly beneficial for robotic planning and navigation. How-
ever, their complex architectures and intensive computational requirements pose significant

challenges for deployment on resource-constrained edge computing platforms.

In summary, while multi-sensor fusion methods offer enhanced detection, segmentation, and
BEV representation, they often come with high computational demands, especially when early
fusion strategies are employed. For BEV applications, the depth precision from point clouds
is valuable, yet the computational challenges must be carefully managed, particularly for real-

time applications in edge computing scenarios.
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CHAPTER 3. RESEARCH METHODOLOGY

3.1 Experiment Statement

In dynamic motion environments, especially in unstructured outdoor scenarios, the strategic
selection and combination of sensor technologies is paramount. This study underscores the
importance of GPS and IMU in estimating the pose and position of mobile robots within the
world coordinate system, essential for motion correction in perception sensors. Central to
this research is the Information Conservation Concept, which posits a correlation between the

dimensionality of sensors, their operational frequency, and the resultant information loss.

This concept is substantiated by examining various sensors: 1D pressure sensors offer high
precision but are limited in capturing 3D details. Conversely, 2D image sensors, like cam-
eras, provide rich features suitable for dense 3D reconstruction. However, 3D sensors such
as LiDAR, while providing spatial accuracy, face limitations in dynamic settings due to lower

operational frequencies, leading to information loss.

This interplay between sensor dimensionality, operational frequency, and information loss is
illustrated in Figure 3.1. The diagram demonstrates how changes in sensor dimensions and
frequencies align with the Information Conservation Concept. It elucidates the inherent trade-
offs in designing sensor systems for dynamic robotic applications, emphasizing the necessity
of integrating 2D and 3D data. This integration mitigates individual sensor limitations and
enhances the overall perception system. Consequently, the research methodology focuses
on developing multi-sensor fusion techniques, designed to amalgamate diverse data sources

effectively, thus augmenting mobile robots’ performance in unstructured outdoor environments.
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Figure 3.1: Hypothesis of Information Loss with Different Dimension

Table 3.1: Sensors Comparison

Sensor Dimension Frequency Accuracy Spatial Information
IMU 1D, 6/9DoF 100-1000Hz B, A w/ loop Full-body motion

GPS 1D, 3D pos 1-10Hz B, Aw/ DGPS Outdoor position
Bio-sensor 1D 0.02-400Hz A+ 3D contact pressure
Camera 2D 10-150Hz A Dense 2D pixels
LiDAR 3D ~10Hz rotary B Sparse 3D point cloud

Accuracy is categorized by levels, indicating precision ranges. LiDAR frequency refers to the rotational
speed of mechanical LiDAR. Loop denotes IMU loop closure correction in SLAM. DGPS signifies
Differential Global Positioning System, enhancing GPS accuracy.

3.1.1 Optimizing Multi-Sensor Selection for Enhanced Perception

As demonstrated in Figure 3.2, high-frequency sensors are utilized for the detection and clas-
sification of 3D micro-features (Bai et al., 2023). This setup employs a combination of 1D
high-frequency sensors and IMUs, enabling the recovery of posture in dynamically complex
motions and providing real-time feedback. Figure 3.3 illustrates a mixed-reality scenario in
autonomous driving for 3D reconstruction tasks, where 2D image sensors rich in features are
integrated with IMU and GPS. This combination facilitates dense 3D reconstruction in environ-
ments characterized by rich features but limited viewing angles (limited-view specifically refers

to camera orientations fixed in alignment with the motion direction of the mobile robot).

These two tasks test sensor combinations under challenges analogous to those faced in USV
target tracking: sparse visual features, dynamic environments, complex motions, systems re-
quiring real-time feedback, and limited viewing perspectives. The objective is to design an

efficient, real-time, and precise multi-sensor fusion platform for 3D target perception in dy-
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Figure 3.2: Combination I: High-Frequency Sensing for Dynamic Signal Classification

namic settings. Algorithm optimization is conducted in a custom-built simulation environment,

while appropriate sensors are employed in physical experiments for algorithm validation.

The first sensor combination confirms that low-dimensional sensors can capture 3D spatial
information, with 100Hz IMU data being effective for motion distortion correction and real-time
posture estimation. The second combination clarifies that while target detection with 2D image
sensors is stable, depth estimation remains unreliable, and a 30Hz image frame rate suffices

for stable target detection in moving environments.

Our experimental platform consists of a combination of 3D LiDAR, 2D Camera, IMU, and GPS.
This assembly forms a robust and stable system, addressing the unique requirements of dy-

namic scene perception and targeted operation in USV applications.

3.1.2 From Simulation Validation to Real-World Implementation

The use of popular simulation engines like Unity! and Unreal Engine 5% (UE5), and their ap-
plication in the field of autonomous driving through platforms such as Carla, has significantly
facilitated research, especially in areas like reinforcement learning. However, these simulators

often require complex development environments and substantial computational resources.

Unity website: https://unity.com/
2Unreal Engine website: https://www.unrealengine.com/en-US
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Figure 3.3: Combination II: Integrated Sim-to-Real Pipeline for Enhanced 3D Reconstruction

In the experimental phase described as Combination Il, experience has been gained in transi-
tioning from the CARLA? simulator to real-world datasets such as KITTI*. This transition does
not dwell on the issues of transfer learning across domains but focuses on the specific needs
of USVs, particularly in dynamics feedback and control. In the simulation environment, the
objective is to render images optically with limited computational resources, incorporating di-
verse rigid body models to mimic real-world scenarios. This approach aims to ensure that the

dynamics feedback in the simulator closely mirrors that of the real world.

A key aspect of this simulation-to-reality approach is maintaining consistency in certain ele-
ments, such as dynamics feedback and raw sensor parameters. By ensuring these elements
remain uniform across both simulated and real-world environments, the research reduces ex-
perimental workload. The parameters optimized in the simulator can be transferred to the real
environment, where fine-tuning through minimal adjustments leads to effective validation. This
methodology not only streamlines the research process but also provides a robust framework
for testing and validating algorithms in a controlled yet realistic setting, thereby enhancing the

overall development and application of USV technology.

SCARLA homepage: https://carla.org/
4KITTI homepage: https://www.cvlibs.net/datasets/kitti/
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Figure 3.4: Diagram of the USV Target Tracking System

Subsequent sections will delve into the specifics of both the simulation tools and the actual
physical products, providing a detailed account of how each contributes to the holistic develop-

ment and validation process in USV research.

3.2 Target Detection and Trajectory Prediction Based on Multi-Sensor Fusion

The USV Tracking system, delineated in this research, is segmented into three integral compo-
nents: perception, planning, and control. The system’s architecture, as depicted in Figure 3.4,

integrates multi-sensor data into the USV’s perception layer, fulfilling two key functionalities:

1. Construction of Dynamic Obstacle Map: Utilizing sparse grid-map formatting with a
voxel resolution of 0.2 meters, the system adeptly constructs dynamic obstacle maps.
This capability is crucial for accurately depicting and navigating the USV’s immediate

operational environment.

2. Detection of Target 3D Coordinates: The system demonstrates remarkable precision
in detecting the three-dimensional coordinates of targets, maintaining an average error
margin of approximately 0.16 meters. Such accuracy is vital for effective target engage-

ment and maneuvering.
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Coordinate transformation, a pivotal process in the system, is approached separately for the
USV and the target. This separation facilitates a nuanced understanding and prediction of the
target’s motion. Within the perception platform of the USV, a rigorous calibration of the multi-
sensor array is undertaken. In the simulated environment, the Rodrigues’ formula as indicated
in Equation 3.2 is employed, obviating the need for traditional calibration boards due to the lack
of distortion and pre-determined FOV parameters. The resulting transformation matrix, linking

the camera and LiDAR, is computed within the SE(3) space.

The global position of the target is ascertained through the camera’s intrinsic parameters,
alongside the meticulously calibrated rotation matrix and translation vector. The target’s image-
based position is extracted using the YOLO image detection algorithm, while its 3D depth infor-
mation is derived by correlating the clustered LiDAR point cloud data with the image detection

algorithm’s two-dimensional coordinates.

An EKF is employed to model the target’s position over time, facilitating an analysis that yields
insights into the object’s velocity and acceleration. This information is instrumental in forecast-
ing the target’s trajectory and directional movement. The forecasted trajectory is then inte-
grated into the planning algorithm as a constraining factor, optimizing the USV’s own trajectory.
Such an optimized approach ensures the USV’s movement remains stable and responsive in

dynamic environments, thereby enhancing the efficacy of target tracking.

In the planning layer of the USV Tracking system, an additional constraint is the orientation
of the USV’s viewing angle, specifically to accommodate the limited-view requirements of the
perception system. This design ensures that the target is positioned as centrally as possible
in the forward trajectory of the USV, maintaining stability and focus within the USV’s field of

vision.

This multi-sensor fusion system exhibits several distinct advantages:

1. Extended Detection Range Compared to LiDAR-Only Systems: Unlike systems re-

liant solely on LiDAR, where point cloud density decreases with distance, this integrated
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system can detect targets at greater distances with reduced computational load. This is

achieved by augmenting sparser LiDAR data with additional sensor inputs.

2. Enhanced Depth Accuracy Over Vision-Only Systems: Compared to purely vision-
based systems, this multi-sensor approach yields more precise depth measurements,
leading to more accurate predictions of target behavior and trajectory. The real-time
obstacle map constructed by the system carries higher confidence levels, thanks to the

integration of depth information from multiple sources.

The system’s ability to predict target trajectories plays a crucial role in navigation, especially
in obstacle-dense environments. Positioning the target in the central field of view, while main-
taining a stable tracking distance, typically results in an arced travel path. Even in situations
where obstacles obscure the line of sight between the USV and the target, the predicted tra-
jectory allows for continued tracking planning for a certain duration until the target is visually
reacquired. This capability ensures the USV’s tracking path remains unaffected by tempo-
rary visual obstructions, showcasing the robustness and adaptability of the system in complex

maritime scenarios.

Transitioning from the conceptual overview, the subsequent content explicates the transforma-
tion matrix formulas and their parameters, as referenced in Figure 3.4. These formulas are
essential for the coordinate transformations crucial in multi-sensor data integration and accu-

rate spatial analysis within the USV system.
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Table 3.2: Parameters Utilized in Coordinate Transformation

Symbol Description

f Camera focal length

I, Width of the image

FOV Field of view of the camera, in radians

R Rotation matrix, computed using Rodrigues’ rotation formula in
simulator

0 Magnitude of the rotation vector

K Skew-symmetric matrix derived from the unit rotation vector

Pnorm Normalized coordinates of image points in 3D space

Pusv Coordinates transformed to the USV

Ppoint_cloud ~ USV coordinates mapped to the LiDAR space

Ptarget_global

Rg

Target’s global coordinates, computed using the observer’s orien-
tation and global position of the USV
Rotation matrix representing the observer’s orientation
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3.3 Experiment Platform

The study presents a cohesive platform integrating simulation with physical experimentation.
This integrated approach is crucial for achieving a seamless transition from simulated to real-
world environments. The simulation, conducted on Gazebo, meticulously replicates the phys-
ical USV and its sensor setup, ensuring consistency across both domains. The physical USV,
crafted through 3D printing, mirrors its simulated counterpart in design and functionality. Sen-
sor configurations on the physical model are directly informed by the findings from the simula-
tion, ensuring each component aligns precisely with the validated simulation parameters. This
harmonized system facilitates the efficient and rational validation of perception and planning
algorithms, embodying a comprehensive and effective approach to USV system development

and testing.

3.3.1 Simulator Setup

In setting up the simulator, the focus is on utilizing Gazebo, an advanced simulation environ-
ment. This setup incorporates an open-source catamaran model, enhanced with realistic water
surface rendering and environmental elements like trees and grass. Sensor parameters within
Gazebo are meticulously configured to mirror real-world counterparts. The primary aim of this
simulated environment is to emulate authentic maritime conditions, facilitating the development

and validation of perception and planning algorithms for the USV.

3.3.1.1 Platform Comparisons

In the realm of autonomous systems research, the selection of an appropriate simulator is piv-
otal for the validation and testing of algorithms. Among the prominent simulators, Unity and
Unreal Engine are distinguished for their exceptional capabilities in high-fidelity image render-
ing. These engines, primarily designed for the creation of visually immersive environments,

are advantageous in contexts where photorealism is of paramount importance. However, their
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substantial computational requirements, a byproduct of their focus on visual realism, render
them less suitable for projects where the emphasis lies on kinematic and dynamic feedback

rather than on visual detail.

In contrast, the Robot Operating System (ROS), in conjunction with the Gazebo simulator,
offers a more balanced approach, particularly beneficial for robotics applications. Gazebo’s
integration with ROS facilitates efficient inter-process communication and provides a compre-
hensive range of virtual sensors, including cameras, LiDAR, and position and orientation data
simulation, analogous to GPS/IMU systems. This integration is instrumental in the field of
robotics, where the simulation of sensor inputs and the accuracy of physical interactions are of

greater significance than the intricacy of visual rendering.

Focusing on the domain of 3D perception algorithms for multi-sensor fusion, especially in the
development of USV tracking systems, the necessity of a simulator that prioritizes dynamic
feedback over visual fidelity becomes apparent. The bespoke simulator, developed on the
Gazebo platform, addresses this specific requirement. It facilitates the effective testing of
USV target tracking algorithms by providing essential sensory simulations without incurring
the computational overhead associated with high-fidelity visual rendering. This strategic focus
on kinematic modeling accuracy and sensor data integration, as opposed to detailed visual
representation, renders the simulator not only efficient but also acutely relevant to the specific

needs of USV tracking systems.

3.3.1.2 Gazebo Simulator Insights

The simulation environment is meticulously designed to facilitate the validation of perception
and planning algorithms for USV. This platform aims to mirror real-world conditions, encom-
passing environmental factors, dynamic feedback, the USV’s propulsion system, and an array
of onboard sensors, all modeled with fidelity to their actual counterparts. Detailed aspects of

this simulation are as follows:
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Left: USV Simulator in Gazebo with Obstacle Targets and Camera Captured Images. Right:
Orientation Prediction Through 8 Viewpoints.

1. Dynamic Environmental Factors. In the simulator designed for USV tracking, incor-

porating stochastic elements to model water wave disturbances and atmospheric wind
perturbations is critical for achieving realism. For water surface waves, a stochastic func-
tion is utilized, where key adjustable parameters include amplitude, wavelength, phase
speed, and directionality. These parameters collectively define the wave’s height, fre-
quency, and movement, allowing for a spectrum of sea conditions to be simulated. For
atmospheric wind perturbations, a separate stochastic function is employed, character-
ized by parameters such as mean wind speed, turbulence intensity, gust factor, and
wind direction variability. These parameters enable the simulation of wind’s random and
dynamic behavior, ranging from steady breezes to erratic gusts. Both functions’ random-
ness is crucial for mimicking the unpredictability of real-world environmental conditions.
By manipulating these parameters, the simulator can accurately reproduce a diverse
range of challenging scenarios, thereby providing a robust platform for testing and opti-

mizing USV tracking algorithms under realistic conditions.

. Catamaran Model. The simulated vessel in the USV tracking system is an advanced
open-source catamaran model, specifically selected for its superior dynamic stability.
This stability is crucial in maintaining sensor alignment and reducing data distortion,
particularly in rough sea conditions. The catamaran’s structure allows for the strategic

placement of multiple sensors, which are rigidly fixed to ensure consistent and accurate
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data acquisition. These sensors, essential for navigation and environment perception, in-
clude cameras, LiDAR, and GPS/IMU systems, each meticulously integrated to replicate
real-world USV sensor setups. Interactive control of the catamaran is enabled through
keyboard inputs, allowing for precise maneuvering and facilitating the testing of various
control algorithms under different scenarios. This feature enhances the versatility of the
simulation, providing researchers with a hands-on approach to evaluate the USV’s per-
formance. Physically, the catamaran adheres to realistic environmental interactions. It is
subjected to gravitational forces and buoyancy, closely mimicking the floating dynamics
of a real vessel. The simulation also incorporates environmental factors such as wind
and water waves, providing a comprehensive testbed for assessing the USV’s stability
and sensor effectiveness under varying conditions. This detailed and realistic simulation
of the catamaran, with its dynamic stability, sensor integration, interactive control, and
physical realism, forms a sophisticated platform for the development and validation of
USV tracking algorithms, ensuring a high degree of fidelity and applicability to real-world

maritime scenarios.

. Sensor Configuration. Sensor configuration utilizes open-source methodologies to
replicate real-world data acquisition. The camera sensor, designed to capture the 3D
environment, operates by mapping all rigid bodies within the simulator to pixel values
based on preset parameters. This process involves calculating the projection from each
object to the camera’s focal point, ensuring an accurate representation of the simulated
environment. The camera’s resolution is set to 1242 x 376 pixels in RGB format, mirror-
ing the specifications of the widely recognized KITTI dataset. This choice facilitates com-
parability and validation against a standard benchmark in autonomous vehicle research.
The camera’s FOV is configured to 90° degrees by 60°, providing a comprehensive vi-
sual coverage. In parallel, a LiDAR sensor is implemented to generate point clouds,
emulating the data acquisition process of real-world LiDAR systems. The LiDAR sensor
in the simulator captures the spatial arrangement of all rigid bodies within its range, con-
verting these into a point cloud format. This sensor is characterized by a 32-line array

with a vertical FOV of 30°. The scanning mechanism of the simulated LiDAR replicates
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the rotational scanning method used in actual LiDAR systems, ensuring realism in data
collection. Random noise is integrated into the LiDAR data to mimic the inherent noise
present in real sensor outputs. These sensor configurations within the simulator play a
pivotal role in creating a realistic and robust environment for testing and validating USV
tracking algorithms, ensuring that the simulated data closely approximates real-world

sensor inputs.

Table 3.3: Detailed Specifications of the Simulation Platform

Component Detail

Simulation Engine Gazebo

GPU NVIDIA GTX 3080ti

CPU Intel i7-9600k

Obstacle Dimensions ~2m X 3m

USV Dimensions ~2m x 1m

LiDAR Type 32-line LiDAR Sensor
Camera Resolution 1241 x 376, RGB Format
Auxiliary Sensors P3D (Incorporating IMU and GPS)
Operational Field Size ~ 200m x 100m

3.3.2 Physical USV Configuration

The physical USV is meticulously designed based on the dynamic model of the catamaran
used in the simulation environment. The sensor platform of the physical USV closely mirrors

that of the simulator, ensuring consistency in data and performance.

A Livox-mid360 LiDAR is selected for its wide FOV ranging from —7° to 52° and a high sam-
pling rate of 200k points per second. As shown in Figure 3.6, the LiDAR is mounted with
a slight downward tilt, while the camera is oriented slightly upward. This arrangement facil-
itates optimal data capture. Calibration between these two components is achieved using a
checkerboard pattern, allowing for the precise determination of the SE(3) transformation ma-

trix between their coordinate systems.

The hull of the USV is constructed through 3D printing technology, incorporating specialized

sealing mechanisms to prevent water intrusion and protect the internal components. For en-
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Figure 3.6: USV Hardware and Sensor Layout

Table 3.4: Detailed Specifications of the Physical USV

Component Detail

CPU Intel i7-1165G7@4.7GHz

Camera USB camera, waterproof, night vision, 1920 x 1080,
30fps, FOV 80° x 60°

LiDAR Livox-mid360, waterproof, FOV 360° x —7° x 52°,
200k pts/s

Motors 2 brushless motors, 180W

GPS Ublox-zedf9p, rtk

IMU Witmotion-hwt905

Autopilot PX4

Max Speed 2.7m/s

Weight ~ 5kg

Duration ~ 35mins

Distance < 500m

Tracking Range ~ 7m

hanced positional accuracy, the GPS system is augmented with Real-Time Kinematic (RTK)
technology. This careful design and integration of components ensure that the physical USV
replicates the dynamics of its simulated counterpart, providing a reliable platform for real-world

testing and validation of algorithms developed in the simulated environment.

3.3.3 3D Reconstruction for Dataset Creation

A comprehensive closed-loop data annotation pipeline is established to create a labeled dataset,

essential for image detection tasks. This pipeline is designed for flexibility and efficiency in
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Figure 3.7: Overhead View of Experimental Site, Huzhou, Zhejiang

handling various targets, streamlining the process of generating a robust dataset for training

purposes.

The process begins with the real-time collection of data for a specific target. Initial labeling is
conducted using online large-scale image detection tools, providing an automated first pass of
annotation. This is followed by a meticulous review and manual correction of labels using the

labelImg® tool, ensuring accuracy and consistency across the dataset.

As depicted in Figure 3.8, the target model is then refined through dense 3D modeling tech-
niques. The model is imported into meshLab®, where manual adjustments and completions are
made to enhance its fidelity. This refined model is subsequently integrated into the simulation
environment, where simulated lighting conditions are applied to generate a dataset that closely

mimics real-world scenarios.

The data generated through these two methods are combined, with a ratio of 8:2, to form the
final dataset for training. This approach offers significant advantages in terms of adaptability;

when switching to a different target, the pipeline allows for easy integration of new data. If

5The source code and additional documentation can be found in the GitHub repository at
https://github.com/HumanSignal/labellmg
8For further information, please visit the MeshLab website at https://www.meshlab.net/
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Figure 3.8: Dataset Creation in Simulator using 3D Reconstructed Models

dense 3D reconstruction of the new target is feasible, it can be seamlessly incorporated into the
dataset using the same dual-method approach. Alternatively, short-term tracking data of the
target can be annotated and added to the dataset. This closed-loop data annotation pipeline
thus provides a highly versatile and efficient method for generating datasets, facilitating the

easy interchange of targets within the USV tracking system.
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CHAPTER 4. EXPERIMENT RESULTS

4.1 3D Reconstruction on Modeling and Building Obstacle Map

As depicted in Figure 4.1, the left panel showcases an indoor reconstruction result utilizing the
ARKit' development tool integrated within an iPhone, combined with the NeuralRecon method
for reconstruction. NeuralRecon? (Sun et al., 2021) is noted for its efficiency and speed in
generating 3D models. In this instance, a rudimentary model of a USV is reconstructed. While
the model is recognizable in form, it falls short in meeting the requirements for detailed image

rendering, highlighting an area for enhancement in high-fidelity visual representation.

On the right, the FIEST® (Han et al., 2019) method is employed to construct a grid-map ob-
stacle map, formatted in ESDF. This method proves effective in spatial planning within three-
dimensional environments, fulfilling the specific requirements of dynamic obstacle mapping in
USV navigation. The FIEST approach, known for its precision in distance measurement and

efficient representation of space, contributes significantly to the accuracy of the obstacle map.

This experimental result primarily serves as a qualitative analysis of feasibility. The construc-
tion of the dynamic obstacle map meets the established criteria, demonstrating the practicality
of the approach. However, the dense 3D reconstruction aspect, while functional, requires fur-
ther refinement to achieve the desired level of detail and accuracy. Enhancing this component
will significantly improve the overall quality and utility of the 3D models in simulating and plan-

ning for real-world navigational scenarios.

T ARKit website: https:/developer.apple.com/augmented-reality/arkit/
2NeuralRecon project page: https:/zju3dv.github.io/neuralrecon/
SFIEST code repository: https:/github.com/HKUST-Aerial-Robotics/FIESTA
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Figure 4.1: 3D Object Modeling (Left) and Obstacle Map Construction (Right)
Integration of 3D point clouds with IMU for accurate object modeling and obstacle mapping.

Figure 4.2: 3D USV Model (Upper row) and Target Model (Bottom row)

To augment the fidelity of dense 3D reconstruction, this study has utilized the advanced ca-
pabilities of the Luma AI* tool, grounded in the Neural Radiance Fields (NeRF) methodology.
Luma AT excels in model reconstruction from an array of multi-view images, coupled with pre-
cise camera pose data. This potent combination enables the isolation of models from their
backgrounds and facilitates the generation of detailed mesh files in PLY format, perfectly suited
for simulator integration. As illustrated in Figure 4.2, the reconstructed models are presented
in four distinct variations: both with and without background elements, and each either incorpo-
rating or omitting texture features. These variations collectively satisfy the stringent requisites
for dense 3D reconstruction, thereby significantly enhancing the caliber of rendered image

datasets, which are integral to the refinement of image detection tasks.

4Luma Al website: https:/lumalabs.ai/

33


https://lumalabs.ai/

train/box_|oss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
359 1.00

U e o e R
1.4 —e— results 1.00 4 Loy
. 3.0 : : 0.98 1
smooth 0.84
1.24 0.95 1 0.96 4
0.6
1.0 090§ 0.94 4
0.4-
0.92 4
0.8 4 0.85 4 0.2 4
0.90 -
g:6:] 0.80 0.0 ! . .
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
0.90 1 1.0 { pree———— o 5 ]
1.2 3.04 :
0.8 )
1.1 2.5 0.88 - 061}
2.0 0.6
1.0 0.86 1 0.4
1.51 0.4 1
0.9 5
28 0.84 1 0.2 0.2
0.8 0.5
T T 0.0
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure 4.3: Comprehensive Training Metrics of YOLO Model

4.2 Target Detection Based on Multi-Sensor System

4.2.1 Visual Target Detection in 2D

Our YOLO model was trained on a custom dataset with the following parameters in Table 4.1.

Table 4.1: Parameters for YOLO Training

Parameter Value

Epochs 100

Batch Size 16

Learning Rate 0.001, reduced by 0.1 every 30 epochs

Optimizer Adam

Loss Function Weights Classification: 1.0, Localization: 5.0, Confidence: 0.5
Data Augmentation Random rotations, horizontal flips, scaling

Anchor Boxes Customized for dataset object dimensions
Regularization L2 (A = 0.0005), Dropout (rate = 0.4)

Input Image Size 1241 x 376 pixels

The hardware setup for this training shown in Table 4.2.

This combination of training parameters and robust hardware facilitated effective and efficient
training of the YOLO model, as evidenced by the model’s convergence depicted in Figure 4.3

of our study.
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Table 4.2: Hardware Setup for YOLO Training

Component Specification

GPUs 2 NVIDIA GTX 3080ti, 12 GB GDDR6X each

CPU Intel i7-9600k @ 4.5GHz

Memory 64 GB RAM
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Figure 4.4: Numbers of Point Cloud with Different Depth

4.2.2 Target Localization in 3D

The sparsity of LIDAR data increases with distance, becoming more pronounced for rotating Li-
DAR systems where point cloud data on distant targets may appear random. In an experiment
conducted in the simulation environment, as shown in Figure 4.4, the perception accuracy of a
32-line LIDAR for a 2m x 1m target was assessed, using the number of points on the target as
the metric. It was observed that in BEV, objects with dense point clouds appeared rectangular
(like the target USV), whereas sparsity in point clouds created ambiguity, making it challenging
to distinguish between point obstacles and the target USV. Based on the trend of point cloud
density with distance, a tracking distance of 7m was established as an optimal constraint for the
planning algorithm. Maintaining the tracking within £1m of this distance enhances perception

accuracy and robustness in target tracking tasks.
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LiDAR is renowned for its precise depth information, a feature that becomes particularly valu-
able in BEV. In this perspective, clustering techniques enable the separation of targets from ob-
stacles, with accuracy bolstered through shape estimation. Known target shapes, discernible
within a 7m range, contrast with typically circular, unknown obstacle shapes. Image-based
YOLO detection provides 2D pixel coordinates of the target’'s center, corresponding to a 3D
ray in space, illustrated by a blue dashed line in the Figure 4.5. This ray, unlikely to intersect
a specific point cloud point, is generally matched by locating the nearest point. In BEV, after
clustering the point clouds, the ray from target detection intersects a specific cluster, identifying
the actual target. By extracting the point cloud of this cluster and estimating depth, the target’s
coordinates in the global coordinate system are obtained. Running this pipeline over a time

series, and storing and analyzing both the USV’s self-localization and target localization data,
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Figure 4.5: Pipeline of Point Cloud Clustering in BEV

enhances the understanding of target behavior and USV navigation.

4.3 Trajectory Prediction

As illustrated in Figure 4.6, the average error in continuous target perception and localization

was found to be 16 cm, significantly smaller than the size of the target itself, thus meeting
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Figure 4.6: Target Detection in Continuous Time Series

the precision requirements for perception and localization. The study employed EKF, Linear
Regression, and LSTM models to predict the time-series trajectory of the target. EKF, while ef-
fective, showed over 20 cm of localization error during target’s rotational movements, leading to
substantial trajectory prediction variations. Linear Regression, predicting the trajectory as the
tangent of the current path, offered more accurate speed estimations. LSTM, trained on exist-
ing trajectory data, demonstrated superior capability in fitting the trajectory curve, as depicted

in Figure 4.7. This comparative analysis of predictive models highlights the trade-offs between
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Figure 4.7: Trajectory Prediction Results

accuracy and responsiveness in dynamic target tracking, underscoring the need for selecting

appropriate predictive methodologies based on the specific requirements of the tracking task.

4.4 USV Tracking with Planning Algorithms

In the final experimental stage, a stable target tracking system was developed by fusing vi-
sual target detection with 3D sensor data. This integration significantly enriched the planning
process, which was the work of Tao HUANG?®, providing valuable 3D perception insights. The
algorithm’s feasibility and robustness in planning were initially verified through simulations and
subsequently confirmed in real-world applications using a physical USV. As depicted in Figure
4.8, our system, in contrast to the baseline, incorporates a FOV constraint and maintains an
optimal tracking distance of 7 meters, ensuring smooth and accurate execution of visual per-
ception tasks. Even in instances where the target is temporarily obscured by obstacles, the
trajectory information provided enables the USV to maintain consistent planning and control,
a testament to Huang'’s planning algorithm. Compared to the Elastic Tracker (Ji et al., 2022),
our method demonstrates notable improvements in stability. Importantly, this approach allows

the USV Agent to independently execute target tracking tasks without the need for communi-

5Tao HUANG is PhD student at Zhejiang University, specializes in control algorithms for automation and mobile
robotics, as well as in reinforcement learning. His contact information is 12332005@zju.edu.cn
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Figure 4.8: Comparative Experimental Results in Complex Aquatic Environment

cation or external information exchange with the target, showcasing stability and robustness in

environments with dense obstacles.

4.5 Target Tracking in Real-World

The primary objective of the real-world experiment was to validate the feasibility of the pro-
posed solution, particularly emphasizing the interconnection between perception tasks and
planning/control tasks within the experimental framework. The planning aspect of the exper-
iment was conducted in collaboration with Tao HUANG. The results of the perception and
trajectory prediction played a pivotal role in the overall success of the task. Notably, this exper-
iment was carried out in challenging conditions characterized by wind and wave disturbances,
underscoring the robustness and adaptability of the approach in dynamic real-world environ-

ments.

Figure 4.9 presents a sequential depiction of a target tracking task conducted in a real-world
setting, arranged chronologically from left to right across five columns. The topmost row pro-
vides an aerial perspective of the experimental setup, with each image incorporating a small
inset in the lower-left corner. This inset displays the visual data captured from the camera
mounted on a white unmanned vessel, which is employed for intricate perception and lo-
calization tasks. The middle row offers a lateral view of the experimental arena, captured

through aerial drone photography, showcasing a more granular understanding of the spatial
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Figure 4.9: Target Tracking in Real-World

arrangement and positional dynamics within the scene. The final row at the bottom portrays
the construction of a dynamic obstacle map, featuring a grid resolution of 1 meter for enhanced
precision. Within the scope of this experiment, a yellow boat is designated as the target for
tracking purposes, while a black kayak, with dimensions of 4 meters in length and 1.5 meters
in width, is strategically positioned to serve as a dynamic obstacle, adding complexity to the

tracking task.
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CHAPTER 5. ANALYSIS

The experiments conducted in this study affirm the significance of 1D sensors, particularly
IMU and GPS. The IMU, operating at a frequency of 100Hz (up to 200Hz in Livox-mid360), is
crucial for recording the motion posture of mobile robots, providing essential data for correct-
ing motion distortions in other sensors. The study also highlights the richness of algorithmic
choices available for 2D image sensors. Compared to point cloud processing, these algorithms
require less computational power, handle various complex environmental challenges, and offer
richer target features in images for accurate identification, making visual detection essential in

dynamic environments.

Furthermore, the reliability of depth measurements from 3D LiDAR stands out. Unlike depth
estimations from vision, the LiDAR’s depth data, obtained through direct measurements, offers
higher accuracy and credibility. This aligns with the proposed Information Conservation con-
cept, which treats sensor operating frequency and information retention as a trade-off. Thus,

our system integrates 3D LiDAR, 2D cameras, IMU, and GPS for comprehensive perception.

The simulation environment developed mirrors the physical feedback characteristics of real-
world settings, facilitating realistic emulation. This environment was instrumental in validating
the multi-sensor platform’s perception performance, which matched the physical counterpart in
precision. The integration of this perception method with planning algorithms in the simulator
significantly reduced experimental workload and enhanced algorithm development efficiency,
demonstrating the effectiveness of our unified simulation and physical USV platform in stream-
lining the research process. Our perception platform successfully maintains stable target track-
ing within a 7-meter range, as evidenced in Figure 5.1, adeptly keeping the target centered in

the field of view with consistent tracking distance. This exemplary performance is attributed
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Figure 5.1: The Distribution of the Target Positions Relative to the USV on X-Y Plane

not only to the high accuracy and robustness of the perception platform but also to precise
trajectory predictions, a vital input for the planning algorithm. Predicting the target’s motion,
direction, speed, and trajectory enables effective navigational planning in obstacle-dense en-
vironments, ensuring continued motion planning even during brief target loss, until the target’s

3D coordinates are reacquired.

In real-world applications, the platform demonstrates feasibility by effectively preprocessing
point cloud data to eliminate surface noise, creating accurate dynamic obstacle maps. This
robust and stable perception platform in physical settings can be adapted to incorporate more
precise and high-frequency visual detection devices, such as infrared cameras for night vision
and multi-focal length camera arrays for long-distance tracking. These devices can be inte-
grated with LiDAR depth information in BEV to precisely and continuously track the target’s 3D

location.
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CHAPTER 6. DISCUSSION

This research critically examines the characteristics and application scenarios of various sen-
sors in USV technology, addressing both general and specific challenges in 3D perception
and multi-sensor fusion. A key finding is the crucial role of high-frequency sensors, especially
IMUs, in dynamic movements for posture correction in USVs. Given the limitations of edge
computing, this study innovatively adapted target detection techniques to feature-rich images,
circumventing the challenges posed by sparse point cloud data and the complexity of aquatic

surface features.

In addressing the precise question of USV target tracking, our multi-sensor system demon-
strated its capability to efficiently track targets in environments dense with obstacles, without
necessitating direct communication with the target. This breakthrough holds immense poten-
tial for both military and commercial applications, such as in unmanned maritime shows and
aerial marine photography. Importantly, this research lays a robust foundation for future explo-
rations in USV swarm formation, a critical step towards solving collective operation challenges

in autonomous maritime systems.

Looking ahead, several avenues for advancement have been identified:

1. Point Cloud Algorithm Enhancement: Future efforts will be directed towards refining
preprocessing of point cloud data. By leveraging time-series information, the aim is to
filter out water surface noise more effectively, thus enhancing the accuracy of the data.
This advancement is crucial in developing more sophisticated and accurate models for

dynamic maritime environments.
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2. Image Detection Algorithm Optimization: While current algorithms leverage time-
series data for accuracy and computational efficiency, there is a growing need to ex-
plore more lightweight algorithms, such as channel-separated MobileNet and ShuffleNet
series. Single-channel image detection methodologies will be a focal point, aiming to
enhance semantic segmentation of overexposed pixels and water stain removal. These
developments are essential for robust target detection, particularly under extreme envi-

ronmental conditions.

3. Physical USV Redesign: To enhance stability, there is a plan to redesign the physical
USV, potentially enlarging its size. The sensor suite may be expanded to include higher-
resolution infrared cameras, adapting to diverse environments and ensuring effective

target tracking.

4. Engineering Challenges in Network Integration: A key challenge lies in the integra-
tion of various tasks into a cohesive end-to-end network. Current limitations, such as
the independence of modules in the pipeline and the reliability requirements for control-
related tasks, will be addressed. The exploration of neural networks, particularly CNNs
and Transformers, will be pivotal in balancing computational efficiency and accuracy for

complex multi-task operations.

5. Advanced Sensor Research: The study will investigate the potential of highly sensitive
flexible pressure sensors to assess water flow conditions beneath the USV. This inno-
vative approach could revolutionize the vessel’s control system, enhancing navigation
precision through advanced PID methods. Additionally, this data could provide invalu-
able environmental feedback for reinforcement learning algorithm research, contributing

significantly to the field’s advancement.

These future directions not only promise to enhance the current state of USV technology but
also align with the forefront of research in intelligent robotics and autonomous navigation sys-
tems. The integration of these advancements will undoubtedly contribute to a new era of

maritime operations, driven by sophisticated autonomous technologies.
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CHAPTER 7. CONCLUSIONS

This thesis represents a comprehensive exploration into the realm of 3D perception and multi-
sensor fusion within the context of USVs. The journey embarked upon in these pages has led
to significant strides in the operational capabilities and autonomy of USVs, marking a notable

contribution to the field of intelligent robotics and autonomous navigation.

Central to this exploration was the development and implementation of advanced perception
algorithms and the integration of a diverse array of sensors. The successful application of
the YOLO algorithm, ESDF method, 3D reconstruction techniques, and a hybrid approach
combining EKF with LSTM networks has culminated in a robust, efficient, and accurate system
for target detection, obstacle mapping, and trajectory prediction. This system represents a
leap forward in USV technology, enabling these vessels to operate more autonomously and

effectively in dynamic and challenging maritime environments.

The creation of a sophisticated Gazebo-based USV simulation platform and the corresponding
physical sensory system for a catamaran have been pivotal in validating the effectiveness of
these methodologies. By seamlessly integrating these systems within the framework of edge
computing, the research has optimized multi-sensor fusion algorithms, enhancing the real-
time decision-making capabilities of USVs. This has not only improved the precision of target
tracking and obstacle avoidance but also ensured the stability and reliability of USV operations,

even in complex scenarios.

The comparative analysis of sensors and the strategic recommendations for perception plat-
forms have provided valuable insights into optimizing sensor fusion, thereby refining the over-

all perception accuracy in USVs. The sim-to-real approach adopted in this thesis has been
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instrumental in bridging the gap between simulation and real-world application, ensuring the

scalability and practicality of the proposed solutions.

The advancements made in multi-USV systems and swarm planning underscore the potential
for these technologies in coordinated maritime missions. This thesis lays the groundwork for
future research in swarm intelligence, expanding the operational scope of USVs and opening

new avenues for complex, multi-agent maritime operations.

In conclusion, this thesis not only addresses the specific challenges in USV target tracking but
also contributes a versatile and scalable framework for 3D perception and multi-sensor fusion
in intelligent robotics. The findings and methodologies presented here not only enhance the
current state of USV technology but also offer a blueprint for future innovations in autonomous

systems, paving the way for a new era in intelligent maritime operations.
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